Innovative Synthesis and Structural Elucidation of Imidazo[1,2-a]pyridines: Incorporating Molecular Docking for Targeted Interactions
Keywords:
Imidazo[1,2-A] Pyridine, 4-(4-Chlorophenoxy)Benzoyl Bromide, Molecular Docking, Pyridin-2-AminesAbstract
A new group of 3-substituted heterocyclic molecules with bridge head nitrogen has been made using several steps of reactions. A well-known method was used to make the first 2-substituted heterocyclic compounds of pyridine. It involves mixing 2-amino pyridine with (2-bromo-1-(4-phenoxyphenyl)ethan-1-one). Using the Vilsmeier-Haack reaction, the carbaldehyde group was added to position-3 of the synthetic 2-substituted imidazo/pyridine rings. It was also found that 3-carbaldehyde reacted with 2-amino pyridine, creating new imidazo/pyridine rings. All of the molecules that were made were characterized using FT-IR, 1H-NMR, and 13C-NMR spectroscopy.The synthesized substances were looked at more closely using molecular docking to see how well they worked in stopping oxidoreductase, an enzyme that is linked to the growth of breast cancer.
References
Katritzky, A. R. (2004). Introduction: heterocycles. Chemical Reviews, 104(5), 2125-2126. https://doi.org/10.1021/cr0406413
Haji, M. (2016). Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein journal of organic chemistry, 12(1), 1269-1301. https://doi.org/10.3762/bjoc.12.121
Joule, J. A. (2016). Natural products containing nitrogen heterocycles—some highlights 1990–2015. Advances in Heterocyclic Chemistry, 119, 81-106. https://doi.org/10.1016/bs.aihch.2015.10.005
Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., ... & Zhao, F. (2017). Quinoline hybrids and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 139, 22-47. https://doi.org/10.1016/j.ejmech.2017.07.061
Nie, G., Bai, Z., Yu, W., & Zhang, L. (2013). Electrochemiluminescence biosensor for Ramos cells based on a nanostructured conducting polymer composite material (PICA‐MWNTs). Journal of Polymer Science Part A: Polymer Chemistry, 51(11), 2385-2392. https://doi.org/10.1002/pola.26623
Hranjec, M., Kralj, M., Piantanida, I., Sedić, M., Šuman, L., Pavelić, K., & Karminski-Zamola, G. (2007). Novel cyano-and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo [1, 2-a] quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. Journal of medicinal chemistry, 50(23), 5696-5711. https://doi.org/10.1021/jm070876h
Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., ... & Gueiffier, A. (1999). Synthesis and antiviral activity of imidazo [1, 2-a] pyridines. European journal of medicinal chemistry, 34(3), 271-274. https://doi.org/10.1016/S0223-5234(99)80061-0.
Hranjec, M., Piantanida, I., Kralj, M., Suman, L., Pavelić, K., & Karminski-Zamola, G. (2008). Novel amidino-substituted thienyl-and furylvinylbenzimidazole: derivatives and their photochemical conversion into corresponding diazacyclopenta [c] fluorenes. synthesis, interactions with DNA and RNA, and antitumor evaluation. 4. Journal of medicinal chemistry, 51(16), 4899-4910. https://doi.org/10.1021/jm8000423
Bagdi, A. K., Santra, S., Monir, K., & Hajra, A. (2015). Synthesis of imidazo [1, 2-a] pyridines: a decade update. Chemical Communications, 51(9), 1555-1575. https://doi.org/10.1039/C4CC08495K
Kurteva, V. (2021). Recent progress in metal-free direct synthesis of imidazo [1, 2-a] pyridines. ACS omega, 6(51), 35173-35185. https://doi.org/10.1021/acsomega.1c03476
Pericherla, K., Kaswan, P., Pandey, K., & Kumar, A. (2015). Recent developments in the synthesis of imidazo [1, 2-a] pyridines. Synthesis, 47(07), 887-912. DOI: 10.1055/s-0034-1380182
Yadav, J. S., Reddy, B. S., Rao, Y. G., Srinivas, M., & Narsaiah, A. V. (2007). Cu (OTf) 2-catalyzed synthesis of imidazo [1, 2-a] pyridines from α-diazoketones and 2-aminopyridines. Tetrahedron Letters, 48(43), 7717-7720. https://doi.org/10.1016/j.tetlet.2007.08.090
Fisher, M. H., & Lusi, A. (1972). Imidazo [1, 2-a] pyridine anthelmintic and antifungal agents. Journal of Medicinal Chemistry, 15(9), 982-985. https://doi.org/10.1021/jm00279a026
Xie, Y. Y., Chen, Z. C., & Zheng, Q. G. (2002). Organic reactions in ionic liquids: Ionic liquid-accelerated cyclocondensation of α-tosyloxyketones with 2-aminopyridine. Synthesis, 2002(11), 1505-1508. DOI: 10.1055/s-2002-33330
Yu, C., Chen, X., Wu, R., Yang, G., Shi, J., & Pan, L. (2014). One‐Pot Synthesis of N‐(Imidazo [1, 2‐a] pyridin‐3‐yl)‐Substituted Sulfonamides Using Catalytic Zinc Chloride. European Journal of Organic Chemistry, 2014(10), 2037-2043. https://doi.org/10.1002/ejoc.201301612
Yan, H., Yang, S., Gao, X., Zhou, K., Ma, C., Yan, R., & Huang, G. (2012). Iron (II)-catalyzed denitration reaction: Synthesis of 3-methyl-2-arylimidazo [1, 2-a] pyridine derivatives from aminopyridines and 2-methylnitroolefins. Synlett, 23(20), 2961-2964. DOI: 10.1055/s-0032-1317685
Rabelo, V. W., Santos, T. F., Terra, L., Santana, M. V., Castro, H. C., Rodrigues, C. R., & Abreu, P. A. (2017). Targeting CYP 51 for drug design by the contributions of molecular modeling. Fundamental & Clinical Pharmacology, 31(1), 37-53. https://doi.org/10.1111/fcp.12230
Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N., & Gholami, S. (2011). Design, synthesis and antifungal activity of some new imidazole and triazole derivatives. Archiv der Pharmazie, 344(10), 658-665. https://doi.org/10.1002/ardp.201000357
Gonçalves, S. S., Souza, A. C. R., Chowdhary, A., Meis, J. F., & Colombo, A. L. (2016). Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses, 59(4), 198-219. https://doi.org/10.1111/myc.12469
Canuto, M. M., & Rodero, F. G. (2002). Antifungal drug resistance to azoles and polyenes. The Lancet infectious diseases, 2(9), 550-563. https://doi.org/10.1016/S1473-3099(02)00371-7
Rival, Y., Grassy, G., Taudou, A., & Ecalle, R. (1991). Antifungal activity in vitro of some imidazo [1, 2-a] pyrimidine derivatives. European journal of medicinal chemistry, 26(1), 13-18. https://doi.org/10.1016/0223-5234(91)90208-5
Rival, Y., Taudou, A., & Ecalle, R. (1993). Synthesis and antifungal activity evaluation of 3-hydroxyimidazo [1, 2-a] pyridine and 3-hydroxyimidazo [1, 2-a] pyrimidine derivatives. Farmaco (Societa chimica italiana: 1989), 48(6), 857-869.
El Kazzouli, S., Berteina-Raboin, S., Mouaddib, A., & Guillaumet, G. (2003). Solid-phase synthesis of imidazo [1, 2-a] pyridines and imidazo [1, 2-a] pyrimidines. Tetrahedron letters, 44(33), 6265-6267. https://doi.org/10.1016/S0040-4039(03)01532-6
Cosimelli, B., Laneri, S., Ostacolo, C., Sacchi, A., Severi, E., Porcù, E., ... & Viola, G. (2014). Synthesis and biological evaluation of imidazo [1, 2-a] pyrimidines and imidazo [1, 2-a] pyridines as new inhibitors of the Wnt/β-catenin signaling. European Journal of Medicinal Chemistry, 83, 45-56. https://doi.org/10.1016/j.ejmech.2014.05.071
Ermolat'ev, D. S., Gimenez, V. N., Babaev, E. V., & Van der Eycken, E. (2006). Efficient Pd (0)-mediated microwave-assisted arylation of 2-substituted imidazo [1, 2-a] pyrimidines. Journal of Combinatorial Chemistry, 8(5), 659-663. https://doi.org/10.1021/cc060031b
Velázquez-Olvera, S., Salgado-Zamora, H., Velázquez-Ponce, M., Campos-Aldrete, E., Reyes-Arellano, A., & Pérez-González, C. (2012). Fluorescent property of 3-hydroxymethyl imidazo [1, 2-a] pyridine and pyrimidine derivatives. Chemistry Central Journal, 6, 1-9. https://doi.org/10.1186/1752-153X-6-83
Podergajs, S., Stanovnik, B., & Tišler, M. (1984). A New Approach for the Synthesis of Fused Imidazoles: The synthesis of 3-acyl-substituted imidazo [1, 2-x] azines. Synthesis, 1984(03), 263-265. DOI: 10.1055/s-1984-30802
Shaaban, M. R. (2013). Facile Access to Novel 3-Acylimidazo [1, 2-a] pyrimidines under Microwave Irradiation. Heterocycles, 87(8), 1775-1783. DOI: 10.3987/COM-13-12753.
Gomez, O., Salgado-Zamor, H., Reyes, A., & Campos, M. E. (2010). A revised approach to the synthesis of 3-acyl imidazo [1, 2-a] pyridines. Heterocyclic Communications, 16(2-3), 99-104. https://doi.org/10.1515/HC.2010.16.2-3.99