Determine The Effectiveness Of Balance In The Gut Microbiome And Some Blood Parameters In Obese Donors In Iraq

Authors

  • Abdulrahman Mahfoodh Khaleel Department Food Science, College of Agriculture, Tikrit University, Iraq
  • Karkaz Mohamed Thalij Department Food Science, College of Agriculture, Tikrit University, Iraq

DOI:

https://doi.org/10.51699/ijbea.v3i3.60

Keywords:

Obesity, Hemoglobin, Platelets, White Blood Cells, ALT, AST

Abstract

The current study aimed to evaluate the relationship between intestinal bacteria and some blood parameters in some cases of obesity in Iraq. The study included 60 samples. Their ages ranged from both sexes (20-64) years (40) samples of people suffering from obesity (Obesity Group) after confirming by measuring weight and height and extracting the value of the Body Mass Index (BMI) and (20) samples of people with ideal weight as a control group (Control Group). The study found that obese donors had decreased values of the parameters of mean red blood cell volume, packed red blood cell volume, hemoglobin, and red blood cells, while   obese donors had increased values of platelets, white blood cells, neutrophils, and lymphocytes. The results showed that obese donors had increased values of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase.It was also noted through the results that there was an increase in the number of bacteria in the stool of obese people compared to the control group.

References

Badran, M. and Laher, I. (2011). Obesity in Arabic-Speaking Countries. Journal of Obesity, Volume 2011: 686430, 9 pages. DOI: https://doi.org/10.1155/2011/686430

Nwayyir, H. A., Mutasher, E. M., Alabid, O. M., Jabbar, M. A., Abdulraheem Al-Kawaz, W. H., Alidrisi, H. A., ... & Khazaal, F. A. K. (2023). Recommendations for the prevention and management of obesity in the Iraqi population. Postgraduate Medicine, 135(5), 425-439.‏ DOI: https://doi.org/10.1080/00325481.2023.2172914

Farooq, U., Idris, M., Sajjad, N., Lashari, M. H., Ahmad, S., Rehman, Z. U., ... & Hameed, S. (2023). Investigating the potential of packed cell volume for deducing hemoglobin: Cholistani camels in perspective. Plos One, 18(5), e0280659. DOI: https://doi.org/10.1371/journal.pone.0280659

Saragih, H., Pannyiwi, R., Marunung, H., Harfika, M., & Saputra, M. K. F. (2024). Pemeriksaan Hemoglobin (Hb) Kolaborasi Universitas Pertahanan RI Dengan PMI Kota Bogor. Sahabat Sosial: Jurnal Pengabdian Masyarakat, 2(3), 346-352.‏‏ DOI: https://doi.org/10.59585/sosisabdimas.v2i3.357

Hirayu, N., & Takasu, O. (2024). Exploring the Hemostatic Effects of Platelet Lysate-Derived Vesicles: Insights from Mouse Models. International Journal of Molecular Sciences, 25(2), 1188.‏ DOI: https://doi.org/10.3390/ijms25021188

Zhao, Y., Diao, Y., Zheng, J., Li, X., & Luan, H. (2024). Performance evaluation of the digital morphology analyser Sysmex DI-60 for white blood cell differentials in abnormal samples. Scientific Reports, 14(1), 14344.‏ DOI: https://doi.org/10.1038/s41598-024-65427-0

Peivasteh-Roudsari, L., Pirhadi, M., Karami, H., Tajdar-Oranj, B., Molaee-Aghaee, E., & Sadighara, P. (2019). Probiotics and food safety: an evidence-based review. Journal of Food Safety and Hygiene, 5(1), 1-9.‏ DOI: https://doi.org/10.18502/jfsh.v5i1.3878

Davis, C. D. (2016). The gut microbiome and its role in obesity. Nutrition Today, 51(4), 167-174.‏ DOI: https://doi.org/10.1097/NT.0000000000000167

Soni, R., Tank, K., & Jain, N. (2018). Knowledge, attitude and practice of health professionals about probiotic use in Ahmedabad, India. Nutrition & Food Science. DOI: https://doi.org/10.1108/NFS-02-2017-0032

Gyawali, I., Zhou, G., Xu, G., Li, G., Wang, Y., Zeng, Y., ... & Jiang, Q. (2023). Supplementation of microencapsulated probiotics modulates gut health and intestinal microbiota. Food Science & Nutrition, 11(8), 4547-4561.‏ DOI: https://doi.org/10.1002/fsn3.3414

Falfan-Cortés, R. N., Mora-Peñaflor, N., Gomez-Aldapa, C. A., Rangel-Vargas, E., Acevedo-Sandoval, O. A., Franco-Fernandez, M. J., & Castro-Rosas, J. (2022). Characterization and evaluation of the probiotic potential in vitro and in situ of Lacticaseibacillus paracasei isolated from tenate cheese. Journal of Food Protection, 85(1), 112-121. DOI: https://doi.org/10.4315/JFP-21-021

Rodak, D. F., Claspha, J., & Mt, S. H. (1995). Diagnostic Hematology. W. B. Saunders Company, Philadelphia. Pp:22, 106.

Huang, Y., & Benson, D. R. (2012). Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture. Archives of Microbiology, 194, 21-28.‏ DOI: https://doi.org/10.1007/s00203-011-0734-5

Michel, J. B., & Martin-Ventura, J. L. (2020). Red blood cells and hemoglobin in human atherosclerosis and related arterial diseases. International Journal of Molecular Sciences, 21(18), 6756. DOI: https://doi.org/10.3390/ijms21186756

Banerjee, A., Dey, T., Majumder, R., Bhattacharya, T., Dey, S., Bandyopadhyay, D., & Chattopadhyay, A. (2023). Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radical Biology and Medicine, 202, 17-33.‏ DOI: https://doi.org/10.1016/j.freeradbiomed.2023.03.019

Olsen, J., & Puri, K. (2022). Interpretation of oxygen saturation in congenital heart disease: fact and fallacy. Pediatrics in Review, 43(8), 436-448.‏ DOI: https://doi.org/10.1542/pir.2020-005364

Pasricha, S. R., Tye-Din, J., Muckenthaler, M. U., & Swinkels, D. W. (2021). Iron deficiency. The Lancet, 397(10270), 233-248.‏ DOI: https://doi.org/10.1016/S0140-6736(20)32594-0

Zhang, J., Nie, C., Zhang, Y., Yang, L., Du, X., Liu, L., ... & Li, Q. (2024). Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomedicine & Pharmacotherapy, 177, 117112.‏ DOI: https://doi.org/10.1016/j.biopha.2024.117112

Nguyen, P. K., Lin, S., & Heidenreich, P. (2016). A systematic comparison of sugar content in low-fat vs regular versions of food. Nutrition & Diabetes, 6(1), e193-e193.‏ DOI: https://doi.org/10.1038/nutd.2015.43

Luo, J., Xu, L., Li, J., & Zhao, S. (2015). Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. European Journal of Gastroenterology and Hepatology, 27(3), 193-199. DOI: https://doi.org/10.1097/MEG.0000000000000254

Abreu, I. C. M. E. D., Guerra, J. F. D. C., Pereira, R. R., Silva, M., Lima, W. G. D., Silva, M. E., & Pedrosa, M. L. (2014). Hypercholesterolemic diet induces hepatic steatosis and alterations in mRNA expression of NADPH oxidase in rat livers. Arquivos Brasileiros de Endocrinologia and Metabologia, 58(3), 251-259. DOI: https://doi.org/10.1590/0004-2730000002831

Dehghani Firouzabadi, M., Poopak, A., Sheikhy, A., Dehghani Firouzabadi, F., Moosaie, F., Rabizadeh, S., & Esteghamati, A. (2024). Nonalcoholic fatty liver disease as a potential risk factor for cardiovascular disease in patients with type 2 diabetes: A prospective cohort study. International Journal of Endocrinology, 2024(1), 5328965.‏ DOI: https://doi.org/10.1155/2024/5328965

Umarani, V., Muvvala, S., Ramesh, A., Lakshmi, B. V. S., & Sravanthi, N. (2015). Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats. Toxicology Mechanisms and Methods, 25(2), 143-149.‏ DOI: https://doi.org/10.3109/15376516.2014.1003359

Jaffar, H. M., Bader ul Ain, H., Tufail, T., Hanif, A., & Malik, T. (2024). Impact of silymarin‐supplemented cookies on liver enzyme and inflammatory markers in non‐alcoholic fatty liver disease patients. Food Science & Nutrition.‏ DOI: https://doi.org/10.1002/fsn3.4348

Kasai, C., Sugimoto, K., Moritani, I., Tanaka, J., Oya, Y., Inoue, H., Tameda, M., Shiraki, K., Ito, M., Takei, Y., et al. (2015). Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 15, 100. DOI: https://doi.org/10.1186/s12876-015-0330-2

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 1022–1023. DOI: https://doi.org/10.1038/4441022a

Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075. DOI: https://doi.org/10.1073/pnas.0504978102

Downloads

Published

2024-08-02

How to Cite

Abdulrahman Mahfoodh Khaleel, & Karkaz Mohamed Thalij. (2024). Determine The Effectiveness Of Balance In The Gut Microbiome And Some Blood Parameters In Obese Donors In Iraq. International Journal of Biological Engineering and Agriculture , 3(3), 355–361. https://doi.org/10.51699/ijbea.v3i3.60

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.