Determine The Effectiveness Of Balance In The Gut Microbiome And Some Blood Parameters In Obese Donors In Iraq
DOI:
https://doi.org/10.51699/ijbea.v3i3.60Keywords:
Obesity, Hemoglobin, Platelets, White Blood Cells, ALT, ASTAbstract
The current study aimed to evaluate the relationship between intestinal bacteria and some blood parameters in some cases of obesity in Iraq. The study included 60 samples. Their ages ranged from both sexes (20-64) years (40) samples of people suffering from obesity (Obesity Group) after confirming by measuring weight and height and extracting the value of the Body Mass Index (BMI) and (20) samples of people with ideal weight as a control group (Control Group). The study found that obese donors had decreased values of the parameters of mean red blood cell volume, packed red blood cell volume, hemoglobin, and red blood cells, while obese donors had increased values of platelets, white blood cells, neutrophils, and lymphocytes. The results showed that obese donors had increased values of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase.It was also noted through the results that there was an increase in the number of bacteria in the stool of obese people compared to the control group.
References
Badran, M. and Laher, I. (2011). Obesity in Arabic-Speaking Countries. Journal of Obesity, Volume 2011: 686430, 9 pages. DOI: https://doi.org/10.1155/2011/686430
Nwayyir, H. A., Mutasher, E. M., Alabid, O. M., Jabbar, M. A., Abdulraheem Al-Kawaz, W. H., Alidrisi, H. A., ... & Khazaal, F. A. K. (2023). Recommendations for the prevention and management of obesity in the Iraqi population. Postgraduate Medicine, 135(5), 425-439. DOI: https://doi.org/10.1080/00325481.2023.2172914
Farooq, U., Idris, M., Sajjad, N., Lashari, M. H., Ahmad, S., Rehman, Z. U., ... & Hameed, S. (2023). Investigating the potential of packed cell volume for deducing hemoglobin: Cholistani camels in perspective. Plos One, 18(5), e0280659. DOI: https://doi.org/10.1371/journal.pone.0280659
Saragih, H., Pannyiwi, R., Marunung, H., Harfika, M., & Saputra, M. K. F. (2024). Pemeriksaan Hemoglobin (Hb) Kolaborasi Universitas Pertahanan RI Dengan PMI Kota Bogor. Sahabat Sosial: Jurnal Pengabdian Masyarakat, 2(3), 346-352. DOI: https://doi.org/10.59585/sosisabdimas.v2i3.357
Hirayu, N., & Takasu, O. (2024). Exploring the Hemostatic Effects of Platelet Lysate-Derived Vesicles: Insights from Mouse Models. International Journal of Molecular Sciences, 25(2), 1188. DOI: https://doi.org/10.3390/ijms25021188
Zhao, Y., Diao, Y., Zheng, J., Li, X., & Luan, H. (2024). Performance evaluation of the digital morphology analyser Sysmex DI-60 for white blood cell differentials in abnormal samples. Scientific Reports, 14(1), 14344. DOI: https://doi.org/10.1038/s41598-024-65427-0
Peivasteh-Roudsari, L., Pirhadi, M., Karami, H., Tajdar-Oranj, B., Molaee-Aghaee, E., & Sadighara, P. (2019). Probiotics and food safety: an evidence-based review. Journal of Food Safety and Hygiene, 5(1), 1-9. DOI: https://doi.org/10.18502/jfsh.v5i1.3878
Davis, C. D. (2016). The gut microbiome and its role in obesity. Nutrition Today, 51(4), 167-174. DOI: https://doi.org/10.1097/NT.0000000000000167
Soni, R., Tank, K., & Jain, N. (2018). Knowledge, attitude and practice of health professionals about probiotic use in Ahmedabad, India. Nutrition & Food Science. DOI: https://doi.org/10.1108/NFS-02-2017-0032
Gyawali, I., Zhou, G., Xu, G., Li, G., Wang, Y., Zeng, Y., ... & Jiang, Q. (2023). Supplementation of microencapsulated probiotics modulates gut health and intestinal microbiota. Food Science & Nutrition, 11(8), 4547-4561. DOI: https://doi.org/10.1002/fsn3.3414
Falfan-Cortés, R. N., Mora-Peñaflor, N., Gomez-Aldapa, C. A., Rangel-Vargas, E., Acevedo-Sandoval, O. A., Franco-Fernandez, M. J., & Castro-Rosas, J. (2022). Characterization and evaluation of the probiotic potential in vitro and in situ of Lacticaseibacillus paracasei isolated from tenate cheese. Journal of Food Protection, 85(1), 112-121. DOI: https://doi.org/10.4315/JFP-21-021
Rodak, D. F., Claspha, J., & Mt, S. H. (1995). Diagnostic Hematology. W. B. Saunders Company, Philadelphia. Pp:22, 106.
Huang, Y., & Benson, D. R. (2012). Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture. Archives of Microbiology, 194, 21-28. DOI: https://doi.org/10.1007/s00203-011-0734-5
Michel, J. B., & Martin-Ventura, J. L. (2020). Red blood cells and hemoglobin in human atherosclerosis and related arterial diseases. International Journal of Molecular Sciences, 21(18), 6756. DOI: https://doi.org/10.3390/ijms21186756
Banerjee, A., Dey, T., Majumder, R., Bhattacharya, T., Dey, S., Bandyopadhyay, D., & Chattopadhyay, A. (2023). Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radical Biology and Medicine, 202, 17-33. DOI: https://doi.org/10.1016/j.freeradbiomed.2023.03.019
Olsen, J., & Puri, K. (2022). Interpretation of oxygen saturation in congenital heart disease: fact and fallacy. Pediatrics in Review, 43(8), 436-448. DOI: https://doi.org/10.1542/pir.2020-005364
Pasricha, S. R., Tye-Din, J., Muckenthaler, M. U., & Swinkels, D. W. (2021). Iron deficiency. The Lancet, 397(10270), 233-248. DOI: https://doi.org/10.1016/S0140-6736(20)32594-0
Zhang, J., Nie, C., Zhang, Y., Yang, L., Du, X., Liu, L., ... & Li, Q. (2024). Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomedicine & Pharmacotherapy, 177, 117112. DOI: https://doi.org/10.1016/j.biopha.2024.117112
Nguyen, P. K., Lin, S., & Heidenreich, P. (2016). A systematic comparison of sugar content in low-fat vs regular versions of food. Nutrition & Diabetes, 6(1), e193-e193. DOI: https://doi.org/10.1038/nutd.2015.43
Luo, J., Xu, L., Li, J., & Zhao, S. (2015). Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. European Journal of Gastroenterology and Hepatology, 27(3), 193-199. DOI: https://doi.org/10.1097/MEG.0000000000000254
Abreu, I. C. M. E. D., Guerra, J. F. D. C., Pereira, R. R., Silva, M., Lima, W. G. D., Silva, M. E., & Pedrosa, M. L. (2014). Hypercholesterolemic diet induces hepatic steatosis and alterations in mRNA expression of NADPH oxidase in rat livers. Arquivos Brasileiros de Endocrinologia and Metabologia, 58(3), 251-259. DOI: https://doi.org/10.1590/0004-2730000002831
Dehghani Firouzabadi, M., Poopak, A., Sheikhy, A., Dehghani Firouzabadi, F., Moosaie, F., Rabizadeh, S., & Esteghamati, A. (2024). Nonalcoholic fatty liver disease as a potential risk factor for cardiovascular disease in patients with type 2 diabetes: A prospective cohort study. International Journal of Endocrinology, 2024(1), 5328965. DOI: https://doi.org/10.1155/2024/5328965
Umarani, V., Muvvala, S., Ramesh, A., Lakshmi, B. V. S., & Sravanthi, N. (2015). Rutin potentially attenuates fluoride-induced oxidative stress-mediated cardiotoxicity, blood toxicity and dyslipidemia in rats. Toxicology Mechanisms and Methods, 25(2), 143-149. DOI: https://doi.org/10.3109/15376516.2014.1003359
Jaffar, H. M., Bader ul Ain, H., Tufail, T., Hanif, A., & Malik, T. (2024). Impact of silymarin‐supplemented cookies on liver enzyme and inflammatory markers in non‐alcoholic fatty liver disease patients. Food Science & Nutrition. DOI: https://doi.org/10.1002/fsn3.4348
Kasai, C., Sugimoto, K., Moritani, I., Tanaka, J., Oya, Y., Inoue, H., Tameda, M., Shiraki, K., Ito, M., Takei, Y., et al. (2015). Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 15, 100. DOI: https://doi.org/10.1186/s12876-015-0330-2
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 1022–1023. DOI: https://doi.org/10.1038/4441022a
Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075. DOI: https://doi.org/10.1073/pnas.0504978102