Enhancing Chili Growth and Yield: The Synergistic Effects of Biochar and Inorganic Fertilizers on Soil Properties and Nutrient Use Efficiency
DOI:
https://doi.org/10.51699/ijbea.v3i4.129Keywords:
Biochar, Chilli, Growth, Yield, Nutrient use EfficiencyAbstract
A pot experiment was conducted during the Kharif 1 season at Hajee Mohammad Danesh Science and Technology University, Dinajpur, to explore the synergistic effects of biochar and inorganic fertilizers on the growth, yield, soil properties, and nutrient use efficiency of chili (Capsicumannum L.). The study was structured in a Randomized Complete Block Design (RCBD) with five treatments: T0 = Control (no fertilizer), T1 = 100% recommended doses of NPK, T2 = 100% biochar (10t ha-1), T3 = 75% biochar + 25% NPK, T4 = 50% biochar + 50% NPK, and T5 = 25% biochar + 75% NPK, replicated four times. Results indicated that combined treatments of biochar and NPK fertilizers significantly enhanced chili growth and yield attributes compared to individual applications. Among the treatments, T4 (50% biochar + 50% NPK) recorded the highest values for most growth parameters, including plant height (38.6 cm), root length (10.50 cm), and number of leaves (78 plant-1), as well as yield attributes like the number of fruits per plant (119), individual fruit weight (2.1 g), and total fruit weight (249.5 g). This treatment also improved soil properties, particularly pH, organic matter content, and available phosphorus, while enhancing nutrient use efficiency having strongly positive correlation. The findings suggest that a 50:50 combination of biochar and NPK fertilizers optimizes chili production by reducing chemical fertilizers with improved soil health through the enhancement of efficient nutrient uses and crop productivity, making it a promising strategy for sustainable
agriculture.
References
Abdiani, S. A., Kakar, K., Gulab, G., & Aryan, S. (2019). Influence of biofertilizer application methods on growth and yield performances of green pepper. International Journal of Innovative Research and Scientific Studies, 2(4). DOI: https://doi.org/10.53894/ijirss.v2i4.23
Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia horticulturae, 243, 457-463. DOI: https://doi.org/10.1016/j.scienta.2018.08.048
Adekiya, A. O., Agbede, T. M., Olayanju, A., Ejue, W. S., Adekanye, T. A., Adenusi, T. T., & Ayeni, J. F. (2020). Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. The Scientific World Journal, 2020(1), 9391630. DOI: https://doi.org/10.1155/2020/9391630
Agbede, T. M. (2010). Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil and Tillage research, 110(1), 25-32. DOI: https://doi.org/10.1016/j.still.2010.06.003
Ajayi, A. E., Holthusen, D., & Horn, R. (2016). Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil and Tillage Research, 155, 166-175. DOI: https://doi.org/10.1016/j.still.2015.08.007
Apori, S. O., & Byalebeka, J. (2021). Contribution of corncob biochar to the chemical properties of a ferralsol in Uganda. Arabian Journal of Geosciences, 14(13), 1290. DOI: https://doi.org/10.1007/s12517-021-07722-y
Arimboor, R., Natarajan, R.B., Menon, K.R., Chandrasekhar, L.P., Moorkoth, V., 2015. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability— a review. Journal of Food Science and Technology, 52 (3), Pp. 1258–1271. DOI: https://doi.org/10.1007/s13197-014-1260-7
Astika, I. N., Arthanawa, I. G. N., Darmawan, I. K., Yana, D. P. S., Situmeang, Y. P., & Sudita, I. D. N. (2022). Comparison of Applications of Various Organic and Inorganic Fertilizers on the Growth and Yield of Cayenne Pepper. Agriwar Journal, 2(1), 28-36. DOI: https://doi.org/10.22225/aj.2.1.2022.28-36
Awasthi, M. K., Wang, Q., Ren, X., Zhao, J., Huang, H., Awasthi, S. K., ... & Zhang, Z. (2016). Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresource Technology, 219, 270-280. DOI: https://doi.org/10.1016/j.biortech.2016.07.128
BBS, (2023). Monthly statistical, Bulletin, Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Govt. of the People’s Republic Bangladesh. P 42.
Cao, H., Ning, L., Xun, M., Feng, F., Li, P., Yue, S., ... & Yang, H. (2019). Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Applied soil ecology, 135, 25-32. DOI: https://doi.org/10.1016/j.apsoil.2018.11.002
Cong, M., Y. Hu, X. Sun, H. Yan, G. Yu, G. Tang, S. Chen, W. Xu and H. Jia. 2023. Long-term effects of biochar application on the growth and physiological characteristics of maize. Front. Plant Sci., 14: 1172425. doi: 10.3389/fpls.2023.1172425 DOI: https://doi.org/10.3389/fpls.2023.1172425
Cui, Y. F., Jun, M. E. N. G., Wang, Q. X., Zhang, W. M., Cheng, X. Y., & Chen, W. F. (2017). Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. Journal of Integrative Agriculture, 16(5), 1064-1074. DOI: https://doi.org/10.1016/S2095-3119(16)61578-2
Dan K. Muhammad Nazri Emir, “Pengaruh Aplikasi Pupuk Organik Dan Anorganik Terhadap Pertumbuhan Dan Hasil Tanaman Cabai Merah (Capsicum annuum L.),” J. Produksi Tanam., vol. 5, no. 11, pp. 1845–1850, 2017.
De Jesus Duarte, Sara, Bruno Glaser, and Carlos Eduardo Pellegrino Cerri. 2019. "Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils" Agronomy 9, no. 4: 165. https://doi.org/10.3390/agronomy9040165 DOI: https://doi.org/10.3390/agronomy9040165
DeLuca, T.H., Gao, S. (2019). Use of Biochar in Organic Farming. In: Sarath Chandran, C., Thomas, S., Unni, M. (eds) Organic Farming. Springer, Cham. https://doi.org/10.1007/978-3-030-04657-6_3 DOI: https://doi.org/10.1007/978-3-030-04657-6_3
Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, and Zheng B (2016) Biochar to improve soil fertility. A review. Agronomy for Sustainable Development 36(2): 36. http://dx.doi.org/10.1007/s13593-016-0372-z. DOI: https://doi.org/10.1007/s13593-016-0372-z
Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 15, 763–782. DOI: https://doi.org/10.1080/01904169209364361
El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. DOI: https://doi.org/10.1016/j.jenvman.2019.02.044
Fernandez-Bedmar, Z., and Alonso-Moraga, A., 2016. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food and Chemical Toxicology, 98, Pp. 89– 99. https://doi.org/10.1016/j.fct.2016.10.011. DOI: https://doi.org/10.1016/j.fct.2016.10.011
Hanpattanakit, P., Vanitchung, S., Saeng-Ngam, S., & Pearaksa, P. (2021). Effect of biochar on red chili growth and production in heavy acid soil. Chem Eng, 83, 283-288.
Haque, M. M., M. M. Rahman, M. M Morshed, M.S. Islam and M. S. Afrad. 2019. Biochar on soil fertility and crop productivity. The Agriculturists. 17 (1-2): 76-88. DOI: https://doi.org/10.3329/agric.v17i1-2.44698
Harvey, O. R., Kuo, L. J., Zimmerman, A. R., Louchouarn, P., Amonette, J. E., & Herbert, B. E. (2012). An index- based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental science & technology, 46(3), 1415-1421. DOI: https://doi.org/10.1021/es2040398
Islam MR, Sarker U, Azam MG, Hossain J, Alam MA, Ullah R, Bari A, Hossain N, El Sabagh A, Islam MS (2024). Potassium augments growth, yield, nutrient content, and drought tolerance in mung bean (Vigna radiata L. Wilczek.). Sci Rep 14: 9378. https://doi.org/10.1038/s41598-024-60129-z DOI: https://doi.org/10.1038/s41598-024-60129-z
Islam MS, Hasan MK, Islam B, Renu NA, Hakim MA, Islam MR, Chowdhury MK, Ueda A, Saneoka H, Ali Raza M, Fahad S, Barutçular C, Çig F, Erman M, El Sabagh A (2021a) Responses of water and pigments status, dry matter partitioning, seed production, and traits of yield and quality to foliar application of GA3 in mungbean (Vigna radiata L.). Frontiers in Agronomy 2:596850. Doi: 10.3389/fagro.2020.596850. DOI: https://doi.org/10.3389/fagro.2020.596850
Islam MS, Hasan MK, Islam MR, Chowdhury MK, Pramanik MH, Iqbal MA, Rajendran K, Iqbal R, Soufan W, Kamran M, Liyun L, El Sabagh A (2023) Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Frontiers in Ecology and Evolution 11:1048768. doi: 10.3389/fevo.2023.1048768. DOI: https://doi.org/10.3389/fevo.2023.1048768
Islam MS, Khatun MK, Hafeez ASMG, Chowdhury MK, Konuşkan Ö, Çiğ F, El Sabagh A (2021b) The effect of zinc fertilization and cow dung on sterility and quantitative traits of rice. Journal of Aridland Agriculture 7:60-67. doi: 10.25081/ jaa.2021.v7.6486. DOI: https://doi.org/10.25081/jaa.2021.v7.6486
Islam MS, Sabagh AE, Hasan K, Akhter M, Barutçular C (2017) Growth and yield response of mungbean (Vigna radiata L.) as influenced by sulphur and boron application. – Scientific Journal of Crop Sciences 6(1):153-160.
Jien, S. H., & Wang, C. S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225-233. DOI: https://doi.org/10.1016/j.catena.2013.06.021
Jones, D.L., J. Rousk, G. Edwards-Jones, T.H. DeLuca and D.V. Murphy. 2012. Biochar-mediated changes in soil quality and plant growth in a three-year field trial. Soil Biol. Biochem., 45: 113-124. doi:10.1016/j.soilbio.2011.10.012 DOI: https://doi.org/10.1016/j.soilbio.2011.10.012
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., & Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501-515. DOI: https://doi.org/10.1071/SR10009
Khan, M.A., S. Khan, X. Ding, A. Khan and M. Alam. 2018. The effects of biochar and rice husk on adsorption and desorption of cadmium on to soils with different water conditions (upland and saturated). Chemosphere, 193: 1120-1126. DOI: https://doi.org/10.1016/j.chemosphere.2017.11.110
Khan, S., C. Chao, M. Waqas, H.P.H. Arp and Y.G. Zhu. 2013. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol., 47: 8624-8632. DOI: https://doi.org/10.1021/es400554x
Kim, P., A.M. Johnson, M.E. Essington, M. Radosevich, W.T. Kwon, S.H. Lee, T.G. Rials and N. Labbe. 2013. Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. Chemosphere, 90: 2623-2630. DOI: https://doi.org/10.1016/j.chemosphere.2012.11.021
Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Research, 48(7), 577-585. DOI: https://doi.org/10.1071/SR10036
Kul, R. 2022. Integrated application of plant growth promoting rhizobacteria and biochar improves salt tolerance in eggplant seedlings. Turkish J. Agri. and Forestry. 46 (5): 677-702. DOI: https://doi.org/10.55730/1300-011X.3035
Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B. (2003). Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil; 249: 343–57. DOI: https://doi.org/10.1023/A:1022833116184
Lehmann J, Rillig MC, Thies J et al. (2011) Biochar effects on soil biota – a review. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022
Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: Science and technology. 1st ed. Earthscan. London. DOI: https://doi.org/10.4324/9781003297673-1
Lehmann, J., & Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems, 113(517), e530. DOI: https://doi.org/10.1201/9781420017113.ch36
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B. J. O. J. F. J. J. E. G., ... & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil science society of America journal, 70(5), 1719- 1730. DOI: https://doi.org/10.2136/sssaj2005.0383
Liu, Z., X. Wu, S. Li, W. Liu, R. Bian, X. Zhang, et al. 2021. Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice–soil system. New Phytol., 232: 1250- 1258. doi: 10.1111/ nph.17651 DOI: https://doi.org/10.1111/nph.17651
Mahato, B., C. Ghosh, F. H. Rahman, P. Biswas and D. C. Mahato. 2020. Response of Vermicompost and Biochar as Organic Soil Amendments on Growth and Yield of Brinjal in Red and Laterite Soil of Purulia District of West Bengal. Agril Techno. Appli. Res. Inst. Kolkata. 21 (7): 44-51. DOI: https://doi.org/10.9734/air/2020/v21i730220
Mahendra, K. A., Situmeang, Y. P., & Suarta, M. (2020). Effect of biochar and compost from chicken, goat, and cow manure on cultivation of red chili (Capsicum annuum L). SEAS (Sustainable Environment Agricultural Science), 4(2), 95-101. DOI: https://doi.org/10.22225/seas.4.2.2291.95-101
Manya` JJ. (2012) Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology 46(15): 7939–7954.http://dx.doi.org/10.1021/es301029g. DOI: https://doi.org/10.1021/es301029g
Maqbool, A., Ali, S., Rizwan, M., Arif, M. S., Yasmeen, T., Riaz, M., ... & Alkahtani, S. (2020). N-fertilizer (urea) enhances the phytoextraction of cadmium through Solanum nigrum L. International Journal of Environmental Research and Public Health, 17(11), 3850. DOI: https://doi.org/10.3390/ijerph17113850
Mishra A, Shinogi Y. (2018). Effects of biochar on soil physio-chemical properties. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES). 4:102-105.
Murtaza, G., Ditta, A., Ullah, N., Usman, M., & Ahmed, Z. (2021). Biochar for the management of nutrient impoverished and metal contaminated soils: Preparation, applications, and prospects. Journal of Soil Science and Plant Nutrition, 21(3), 2191-2213. DOI: https://doi.org/10.1007/s42729-021-00514-z
Muthukuma, T., and Sathya, R., 2017. Endorhizal fungal association and colonization patterns in Solanaceae. Pol. Bot. J., 62 (2), Pp. 287–299. DOI: https://doi.org/10.1515/pbj-2017-0016
Nigussie, A., E. Kissi, M. Misganaw and G. Ambaw. 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (lactuca sativa) grown in chromium polluted soils. American-Eurasian J. Agri. and Envl. Sci. 12 (3): 369-76.
Nurhidayati N, Mariati N. (2014) Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity, Journal of Degraded and Mining Lands Management 2(1):223-230.
Pandian, K., Subramaniayan, P., Gnasekaran, P., & Chitraputhirapillai, S. (2016). Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Archives of Agronomy and Soil Science, 62(9), 1293-1310. DOI: https://doi.org/10.1080/03650340.2016.1139086
Paul, W.B., Eric, J.V., 2013. Peppers: Vegetable and Spice Capsicums, Centre for Agriculture and Bioscience International, 2nd edition.
Prendergast-Miller M, Duvall M, Sohi S (2014) Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Euro-pean Journal of Soil Science, 65, 173–185. DOI: https://doi.org/10.1111/ejss.12079
Rakibuzzaman. M., A. K. Mahato, M. A. Husna, M. Maliha and A. F. M. Jamal Uddin. 2019. Influence of natural one and neem oil on growth and yield of brinjal (Solanum melongena). J. Biosci. and Agri. Res. 20 (02): 1694-1699 DOI: https://doi.org/10.18801/jbar.200219.206
Rochman, B. N. (2015). Pengaruh Pemberian Beberapa Jenis Pupuk Organik Padat Terhadap Pertumbuhan dan Hasil Cabai Merah, Bawang Merah, dan Bawang Daun. Gontor AGROTECH Science Journal, 1(2), 53-70. DOI: https://doi.org/10.21111/agrotech.v1i2.264
Rona, Y. (2014). Penggunaan Kompos Dan Biochar Untuk Pembibitan, Pertumbuhan dan Hasil Cabai Rawit (Capsicum Frutenscen L). Fakultas Pertanian, 2(2).
Sayed ZIM, Hosen M, Rahman MH, Morium M, Islam MR, Kubra MK, Hossain MA, Khatun MS, Shaddam MO, Islam MR, Iqbal MA, Soufan W, El Sabagh A, Islam MS (2024) Effect of boron and zinc on growth, yield attributes, yield and nutrient bio-fortification of grass pea (Lathyrus sativus L.) in Old Himalayan Piedmont Plain. Appl Ecol Environ Res 22(3):2277-2305. DOI: http://dx.doi.org/10.15666/aeer/ 2203_22772305 DOI: https://doi.org/10.15666/aeer/2203_22772305
Schulz H., Glaser B. 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science, 175(3): 410-422. DOI: https://doi.org/10.1002/jpln.201100143
Shah, K.H., M.Y. Memon, S.H. Siddiqui, and M. Aslam. (2001): Response of wheat to broadcast and fertigation technique or P application. - Pak. J. Biol. Sci 4: 543-545.
Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. International journal of agriculture, environment and biotechnology, 10(6), 675-680. DOI: https://doi.org/10.5958/2230-732X.2017.00083.3
Shimbo, S., Zhang, Z. W., Watanabe, T., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K., & Ikeda, M. (2001). Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Science of the total environment, 281(1-3), 165-175. DOI: https://doi.org/10.1016/S0048-9697(01)00844-0
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82. DOI: https://doi.org/10.1016/S0065-2113(10)05002-9
Steiner, C., W.G. Teixeira, J. Lehmann, J.L.V. Macêdo, W.E.H. Blum and W. Zech. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 291: 275-290. DOI: https://doi.org/10.1007/s11104-007-9193-9
Subha, G., Praveen, K.P., Parveez, A.P., Vijay, S., 2017. Medicinal Properties of Chilli Pepper in Human Diet: An Editorial. ARC Journal of Public Health and Community Medicine, 2 (1), Pp. 6-7. DOI: https://doi.org/10.20431/2456-0596.0201002
Theis, J., & Rillig, M. (2009). Characteristics of biochar biological properties, biochar for environment management science and technology. Earthscan, London, 85.
Van Zwieten L, Singh B, Joseph S, Kimber S, Cowie A, Yin Chan K. (2009). Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S. (eds.) Biochar for Environmental Management. VA, USA: Earthscan: London Sterling.
Wangmo, T., Dorji, S., Tobgay, T., & Pelden, T. (2022). Effects of biochar on yield of chilli, and soil chemical properties. Asian Journal of Agricultural Extension, Economics & Sociology, 40(9), 64-77. DOI: https://doi.org/10.9734/ajaees/2022/v40i930976
Widowati, U. W., Soehono, L. A., & Guritno, B. (2011). Effect of biochar on the release and loss of nitrogen from urea fertilization. Journal of Agriculture and Food Technology, 1(7), 127-132.
Wisnubroto, E. I., Utomo, W. H., & Indrayatie, E. R. (2017). Residual effect of biochar on growth and yield of red chili (Capsicum Annum L.). Journal of Advanced Agricultural Technologies Vol, 4(1). DOI: https://doi.org/10.18178/joaat.4.1.28-31
Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nature Communications. 2010;1(1). DOI:10.1038/ncomms1053 DOI: https://doi.org/10.1038/ncomms1053
Woolf, D. (2008). Biochar as a soil amendment: A review of the environmental implications.
Xiang, Y., Deng, Q., Duan, H., & Guo, Y. (2017). Effects of biochar application on root traits: a meta-analysis. GCB DOI: https://doi.org/10.1111/gcbb.12449
bioenergy, 9(10), 1563-1572.
Xu G, Lv Y, Sun J, Shao H, and Wei L. (2012) Recent advances in biochar applications in agricultural soils: Benefits and environmental implications. Clean: Soil, Air, Water 40(10): 1093–1098. http://dx.doi.org/10.1002/clen.201100738. DOI: https://doi.org/10.1002/clen.201100738
Yang, C.D.; Lu, S.G. Dynamic effects of direct returning of straw and corresponding biochar on acidity, nutrients, and exchangeable properties of red soil. Huan Jing Xue Huanjing Kexue 2020, 41, 4246–4252.
Yilangai, R. M., Manu, S. A., Pineau, W., Mailumo, S. S., & Okeke-Agulu, K. I. (2014). The effect of biochar and crop veil on growth and yield of Tomato (Lycopersicum esculentus Mill) in Jos, North central Nigeria. DOI: https://doi.org/10.12944/CARJ.2.1.05
Yu, F., Li, X., Wang, J., Wang, X., Xiao, H., Wang, Z., ... & Chen, G. (2022). Coupling anaerobic digestion with pyrolysis for phosphorus-enriched biochar production from constructed wetland biomass. ACS Sustainable Chemistry & Engineering, 10(12), 3972-3980. DOI: https://doi.org/10.1021/acssuschemeng.1c08537
Zhang C, Lin Y, Tian X, Xu Q, Chen Z, Lin W. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl. Soil Ecol. 2017;112:90– 96. Available:https://www.cabdirect.org/cabdire ct/abstract/20173070195 DOI: https://doi.org/10.1016/j.apsoil.2016.12.005